Search results
Results from the WOW.Com Content Network
The pressure of seawater at a depth of 33 feet equals one atmosphere. The absolute pressure at 33 feet depth in sea water is the sum of atmospheric and hydrostatic pressure for that depth, and is 66 fsw, or two atmospheres absolute. For every additional 33 feet of depth, another atmosphere of pressure accumulates. [6]
The hull of a submarine must be able to withstand the forces created by the outside water pressure being greater than the inside air pressure. The outside water pressure increases with depth and so the stresses on the hull also increase with depth. Each 10 metres (33 ft) of depth puts another atmosphere (1 bar, 14.7 psi, 101 kPa) of pressure on ...
3,200 psi Critical pressure of water 28 MPa 4,100 psi Overpressure caused by the bomb explosion during the Oklahoma City bombing [72] 40 MPa 5,800 psi Water pressure at the depth of the wreck of the Titanic: 69 MPa 10,000 psi Water pressure withstood by the DSV Shinkai 6500 in visiting ocean depths of > 6500 meters [73] 70 to 280 MPa 10,000 to ...
The term (hydro)static pressure is sometimes used in fluid statics to refer to the pressure of a fluid at a nominated depth in the fluid. In fluid statics the fluid is stationary everywhere and the concepts of dynamic pressure and total pressure are not applicable.
The horizontal pressure gradient is a two-dimensional vector resulting from the projection of the pressure gradient onto a local horizontal plane. Near the Earth's surface, this horizontal pressure gradient force is directed from higher toward lower pressure. Its particular orientation at any one time and place depends strongly on the weather ...
The epipelagic zone, otherwise known as the sunlit zone or the euphotic zone, goes to a depth of about 200 meters (656 feet). It is the depth of water to which sunlight is able to penetrate. Although it is only 2 to 3 percent of the entire ocean, the epipelagic zone is home to a massive number of organisms. [3]
Hydrostatic pressure is the pressure exerted by a fluid at rest – for example, on the sides of a swimming pool, a glass of water or the bottom of the ocean. Its value at any given location within the fluid is the product of the fluid density ( ρ ), the depth ( d ), and the forces applied by gravity ( g ) plus any background pressures, such ...
Using the figures above, we can calculate the maximum pressure at various depths in an offshore oil well. Saltwater is 0.444 psi/ft (2.5% higher than fresh water but this not general and depends on salt concentration in water) Pore pressure in the rock could be as high as 1.0 psi/ft of depth (19.25 lb/gal)