Search results
Results from the WOW.Com Content Network
Remyelination is the process of propagating oligodendrocyte precursor cells to form oligodendrocytes to create new myelin sheaths on demyelinated axons in the Central nervous system (CNS). This is a process naturally regulated in the body and tends to be very efficient in a healthy CNS. [ 1 ]
Human axon growth rates can reach 2 mm/day in small nerves and 5 mm/day in large nerves. [4] The distal segment, however, experiences Wallerian degeneration within hours of the injury; the axons and myelin degenerate, but the endoneurium remains. In the later stages of regeneration the remaining endoneurial tube directs axon growth back to the ...
Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.
The researchers then carried out further in vitro studies with slices of mouse brain tissue, finding that PIPE-307 increased the myelination of nerve cell axons.
In chronic MS lesions where remyelination is incomplete, there is evidence that there are oligodendrocytes with processes extending toward demyelinated axons, but they do not seem to be able to generate new myelin. [63] The mechanisms that regulate differentiation of OPCs into myelinating oligodendrocytes are an active area of research.
With an estimated 6.9 million Americans aged 65 and older currently living with Alzheimer's disease, the road to a cure seems long and uncertain.. But as the year comes to a close, experts are ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Myelin's best known function is to increase the rate at which information, encoded as electrical charges, passes along the axon's length. Myelin achieves this by eliciting saltatory conduction. [1] Saltatory conduction refers to the fact that electrical impulses 'jump' along the axon, over long myelin sheaths, from one node of Ranvier to the next.