Search results
Results from the WOW.Com Content Network
In theoretical chemistry, the Empirical Valence Bond (EVB) approach is an approximation for calculating free-energies of a chemical reaction in condensed-phase.It was first developed by Israeli chemist Arieh Warshel, [1] and was inspired by the way Marcus theory uses potential surfaces to calculate the probability of electron transfer.
In atomic physics and quantum chemistry, the Aufbau principle (/ ˈ aʊ f b aʊ /, from German: Aufbauprinzip, lit. 'building-up principle'), also called the Aufbau rule, states that in the ground state of an atom or ion, electrons first fill subshells of the lowest available energy, then fill subshells of higher energy. For example, the 1s ...
The bond valence model uses mostly classical physics, and with little more than a pocket calculator, it gives quantitative predictions of bond lengths and places limits on what structures can be formed. However, like all models, the bond valence model has its limitations.
The σ-π model differentiates bonds and lone pairs of σ symmetry from those of π symmetry, while the equivalent-orbital model hybridizes them. The σ-π treatment takes into account molecular symmetry and is better suited to interpretation of aromatic molecules ( Hückel's rule ), although computational calculations of certain molecules tend ...
Valence bond theory views bonds as weakly coupled orbitals (small overlap). Valence bond theory is typically easier to employ in ground state molecules. The core orbitals and electrons remain essentially unchanged during the formation of bonds. σ bond between two atoms: localization of electron density Two p-orbitals forming a π-bond.
In chemistry, bond energy (BE) is one measure of the strength of a chemical bond. It is sometimes called the mean bond , bond enthalpy , average bond enthalpy , or bond strength . [ 1 ] [ 2 ] [ 3 ] IUPAC defines bond energy as the average value of the gas-phase bond-dissociation energy (usually at a temperature of 298.15 K) for all bonds of the ...
Bond order is the number of chemical bonds between a pair of atoms. The bond order of a molecule can be calculated by subtracting the number of electrons in anti-bonding orbitals from the number of bonding orbitals, and the resulting number is then divided by two. A molecule is expected to be stable if it has bond order larger than zero.
Molecular modelling encompasses all methods, theoretical and computational, used to model or mimic the behaviour of molecules. [1] The methods are used in the fields of computational chemistry, drug design, computational biology and materials science to study molecular systems ranging from small chemical systems to large biological molecules and material assemblies.