enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  3. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: ⁡ = = + +, where c k is defined as above. Asymptotic expansion

  4. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    In mathematics, the integral test for convergence is a method used to test infinite series of monotonic terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test .

  5. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor, [8] after whom the series are now named. The Maclaurin series was named after Colin Maclaurin, a Scottish mathematician, who published a special case of the Taylor result in the mid-18th century.

  6. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .

  7. Colin Maclaurin - Wikipedia

    en.wikipedia.org/wiki/Colin_Maclaurin

    Maclaurin attributed the series to Brook Taylor, though the series was known before to Newton and Gregory, and in special cases to Madhava of Sangamagrama in fourteenth century India. [6] Nevertheless, Maclaurin received credit for his use of the series, and the Taylor series expanded around 0 is sometimes known as the Maclaurin series. [7]

  8. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus .

  9. Grand Theft Auto V - Wikipedia

    en.wikipedia.org/wiki/Grand_Theft_Auto_V

    Grand Theft Auto V is a 2013 action-adventure game developed by Rockstar North and published by Rockstar Games.It is the seventh main entry in the Grand Theft Auto series, following 2008's Grand Theft Auto IV, and the fifteenth instalment overall.