Search results
Results from the WOW.Com Content Network
De Moivre's Theorem for Trig Identities by Michael Croucher, Wolfram Demonstrations Project Listen to this article ( 18 minutes ) This audio file was created from a revision of this article dated 5 June 2021 ( 2021-06-05 ) , and does not reflect subsequent edits.
According to the de Moivre–Laplace theorem, as n grows large, the shape of the discrete distribution converges to the continuous Gaussian curve of the normal distribution. In probability theory , the de Moivre–Laplace theorem , which is a special case of the central limit theorem , states that the normal distribution may be used as an ...
Thébault's theorem ; Theorem of de Moivre–Laplace (probability theory) Theorem of the cube (algebraic varieties) Theorem of the gnomon ; Theorem of three moments ; Theorem on friends and strangers (Ramsey theory) Thévenin's theorem (electrical circuits) Thompson transitivity theorem (finite groups)
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory , the theory of group characters , and the discrete Fourier transform .
De Moivre wrote in English because he resided in England at the time, having fled France to escape the persecution of Huguenots. The book's title came to be synonymous with probability theory , and accordingly the phrase was used in Thomas Bayes ' famous posthumous paper An Essay Towards Solving a Problem in the Doctrine of Chances , wherein a ...
de Moivre's theorem may be: de Moivre's formula, a trigonometric identity; Theorem of de Moivre–Laplace, a central limit theorem This page was last edited on 28 ...
Language links are at the top of the page. Search. Search
On a note more distantly related to combinatorics, the second section also discusses the general formula for sums of integer powers; the free coefficients of this formula are therefore called the Bernoulli numbers, which influenced Abraham de Moivre's work later, [16] and which have proven to have numerous applications in number theory. [22]