enow.com Web Search

  1. Ad

    related to: factorization of birational maps pdf printable sheets full
  2. It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Worksheet Generator

      Use our worksheet generator to make

      your own personalized puzzles.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

    • Printable Workbooks

      Download & print 300+ workbooks

      written & reviewed by teachers.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Birational geometry - Wikipedia

    en.wikipedia.org/wiki/Birational_geometry

    A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f. A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y. In this ...

  3. Dan Abramovich - Wikipedia

    en.wikipedia.org/wiki/Dan_Abramovich

    Print/export Download as PDF; ... (the full proof came later from Ehud Hrushovski). ... "Torification and factorization of birational maps".

  4. Blowing up - Wikipedia

    en.wikipedia.org/wiki/Blowing_up

    The weak factorization theorem says that every birational map can be factored as a composition of particularly simple blowups. The Cremona group, the group of birational automorphisms of the plane, is generated by blowups. Besides their importance in describing birational transformations, blowups are also an important way of constructing new ...

  5. Zariski's main theorem - Wikipedia

    en.wikipedia.org/wiki/Zariski's_main_theorem

    A birational morphism with finite fibers to a normal variety is an isomorphism to an open subset. The total transform of a normal fundamental point of a birational map has positive dimension. This is essentially Zariski's original version. The total transform of a normal point under a proper birational morphism is connected.

  6. Minimal model program - Wikipedia

    en.wikipedia.org/wiki/Minimal_model_program

    Every irreducible complex algebraic curve is birational to a unique smooth projective curve, so the theory for curves is trivial. The case of surfaces was first investigated by the geometers of the Italian school around 1900; the contraction theorem of Guido Castelnuovo essentially describes the process of constructing a minimal model of any smooth projective surface.

  7. Morphism of algebraic varieties - Wikipedia

    en.wikipedia.org/wiki/Morphism_of_algebraic...

    The composition of regular maps is again regular; thus, algebraic varieties form the category of algebraic varieties where the morphisms are the regular maps. Regular maps between affine varieties correspond contravariantly in one-to-one to algebra homomorphisms between the coordinate rings: if f : X → Y is a morphism of affine varieties ...

  8. Rational mapping - Wikipedia

    en.wikipedia.org/wiki/Rational_mapping

    Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).

  9. Resolution of singularities - Wikipedia

    en.wikipedia.org/wiki/Resolution_of_singularities

    In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, which is a non-singular variety W with a proper birational map W→V. For varieties over fields of characteristic 0 , this was proved by Heisuke Hironaka in 1964; [ 1 ] while for varieties of dimension at least 4 over ...

  1. Ad

    related to: factorization of birational maps pdf printable sheets full