enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The spectrum of a matrix is the list of eigenvalues, repeated according to multiplicity; in an alternative notation the set of eigenvalues with their multiplicities. An important quantity associated with the spectrum is the maximum absolute value of any eigenvalue. This is known as the spectral radius of the matrix.

  3. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  4. Molien's formula - Wikipedia

    en.wikipedia.org/wiki/Molien's_formula

    Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... are the possibly repeated eigenvalues of : ...

  5. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Note that there are 2n + 1 of these values, but only the first n + 1 are unique. The (n + 1)th value gives us the zero vector as an eigenvector with eigenvalue 0, which is trivial. This can be seen by returning to the original recurrence. So we consider only the first n of these values to be the n eigenvalues of the Dirichlet - Neumann problem.

  6. Cayley–Hamilton theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Hamilton_theorem

    When the eigenvalues are repeated, that is λ i = λ j for some i ≠ j, two or more equations are identical; and hence the linear equations cannot be solved uniquely. For such cases, for an eigenvalue λ with multiplicity m , the first m – 1 derivatives of p ( x ) vanish at the eigenvalue.

  7. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  8. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    If a matrix A is both Hermitian and unitary, then it can only have eigenvalues of , and therefore = +, where + is the projector onto the subspace with eigenvalue +1, and is the projector onto the subspace with eigenvalue ; By the completeness of the eigenbasis, + + =.

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Download as PDF; Printable version; In other projects ... eigendecomposition to cases where there are repeated eigenvalues and cannot be diagonalized, the Jordan ...