Search results
Results from the WOW.Com Content Network
The Principles and Standards for School Mathematics was developed by the NCTM. The NCTM's stated intent was to improve mathematics education. The contents were based on surveys of existing curriculum materials, curricula and policies from many countries, educational research publications, and government agencies such as the U.S. National Science Foundation. [3]
Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.
Statistical assumptions can be put into two classes, depending upon which approach to inference is used. Model-based assumptions. These include the following three types: Distributional assumptions. Where a statistical model involves terms relating to random errors, assumptions may be made about the probability distribution of these errors. [5]
The risk is 5–6% (similar to that of a woman in her early 40s giving birth), [394] [395] compared with a baseline risk of 3–4%. [395] The effects of inbreeding depression , while still relatively small compared to other factors (and thus difficult to control for in a scientific experiment), become more noticeable if isolated and maintained ...
A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems ; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms ...
A scientific hypothesis must be based on observations and make a testable and reproducible prediction about reality, in a process beginning with an educated guess or thought. If a hypothesis is repeatedly independently demonstrated by experiment to be true, it becomes a scientific theory .
Euclid's proofs are essentially correct, but strictly speaking sometimes contain gaps because he tacitly uses some unstated assumptions, such as the existence of intersection points. In 1899 David Hilbert gave a complete set of ( second order ) axioms for Euclidean geometry, called Hilbert's axioms , and between 1926 and 1959 Tarski gave some ...
The measurements are usually made of a real-world system, rather than of the model's incomplete representation of that system, and so a special function called the observation operator (usually depicted by h() for a nonlinear operator or H for its linearization) is needed to map the modeled variable to a form that can be directly compared with ...