enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    If the additive identity and the multiplicative identity are the same, then the ring is trivial (proved below). In the ring M m × n (R) of m-by-n matrices over a ring R, the additive identity is the zero matrix, [1] denoted O or 0, and is the m-by-n matrix whose entries consist entirely of the identity element 0 in R.

  3. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    An absorbing element in a multiplicative semigroup or semiring generalises the property 0 ⋅ x = 0. Examples include: The empty set, which is an absorbing element under Cartesian product of sets, since { } × S = { } The zero function or zero map defined by z(x) = 0 under pointwise multiplication (f ⋅ g)(x) = f(x) ⋅ g(x)

  4. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    A ring in which the zero-product property holds is called a domain.A commutative domain with a multiplicative identity element is called an integral domain.Any field is an integral domain; in fact, any subring of a field is an integral domain (as long as it contains 1).

  5. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    In fact, every element can be a left identity. In a similar manner, there can be several right identities. But if there is both a right identity and a left identity, then they must be equal, resulting in a single two-sided identity. To see this, note that if l is a left identity and r is a right identity, then l = l ∗ r = r.

  6. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  7. Absorbing element - Wikipedia

    en.wikipedia.org/wiki/Absorbing_element

    Zero is thus an absorbing element. The zero of any ring is also an absorbing element. For an element r of a ring R, r0 = r(0 + 0) = r0 + r0, so 0 = r0, as zero is the unique element a for which r − r = a for any r in the ring R. This property holds true also in a rng since multiplicative identity isn't required.

  8. 0 - Wikipedia

    en.wikipedia.org/wiki/0

    0 (zero) is a number representing an empty quantity.Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures.

  9. Zero matrix - Wikipedia

    en.wikipedia.org/wiki/Zero_matrix

    In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of m × n {\displaystyle m\times n} matrices, and is denoted by the symbol O {\displaystyle O} or 0 {\displaystyle 0} followed by subscripts corresponding to the ...