enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coherence length - Wikipedia

    en.wikipedia.org/wiki/Coherence_length

    Multimode helium–neon lasers have a typical coherence length on the order of centimeters, while the coherence length of longitudinally single-mode lasers can exceed 1 km. Semiconductor lasers can reach some 100 m, but small, inexpensive semiconductor lasers have shorter lengths, with one source [4] claiming 20 cm. Singlemode fiber lasers with linewidths of a few kHz can have coherence ...

  3. Coherence (physics) - Wikipedia

    en.wikipedia.org/wiki/Coherence_(physics)

    The coherence length is defined as the distance the wave travels in time . [11]: 560, 571–573 The coherence time is not the time duration of the signal; the coherence length differs from the coherence area (see below).

  4. Laser linewidth - Wikipedia

    en.wikipedia.org/wiki/Laser_linewidth

    Laser linewidth is the spectral linewidth of a laser beam.. Two of the most distinctive characteristics of laser emission are spatial coherence and spectral coherence.While spatial coherence is related to the beam divergence of the laser, spectral coherence is evaluated by measuring the linewidth of laser radiation.

  5. Distributed-feedback laser - Wikipedia

    en.wikipedia.org/wiki/Distributed-feedback_laser

    These longitudinal diffraction-grating mirrors reflect the light back in the cavity, very much like a multi-layer mirror coating. The diffraction-grating mirrors tend to reflect a narrower band of wavelengths than normal end mirrors, and this limits the number of standing waves that can be supported by the gain in the cavity.

  6. Coherence time - Wikipedia

    en.wikipedia.org/wiki/Coherence_time

    The coherence time, usually designated τ, is calculated by dividing the coherence length by the phase velocity of light in a medium; approximately given by = where λ is the central wavelength of the source, Δν and Δλ is the spectral width of the source in units of frequency and wavelength respectively, and c is the speed of light in vacuum.

  7. Line graph - Wikipedia

    en.wikipedia.org/wiki/Line_graph

    In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

  8. Michelson interferometer - Wikipedia

    en.wikipedia.org/wiki/Michelson_interferometer

    The high coherence length of a laser allows unequal path lengths in the test and reference arms and permits economical use of the Twyman–Green configuration in testing large optical components. A similar scheme has been used by Tajammal M in his PhD thesis (Manchester University UK, 1995) to balance two arms of an LDA system.

  9. Coherence (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Coherence_(signal_processing)

    The coherence of a linear system therefore represents the fractional part of the output signal power that is produced by the input at that frequency. We can also view the quantity 1 − C x y {\displaystyle 1-C_{xy}} as an estimate of the fractional power of the output that is not contributed by the input at a particular frequency.