Search results
Results from the WOW.Com Content Network
HER2 is a member of the human epidermal growth factor receptor (HER/EGFR/ERBB) family. But contrary to other members of the ERBB family, HER2 does not directly bind ligand. HER2 activation results from heterodimerization with another ERBB member or by homodimerization when HER2 concentration are high, for instance in cancer. [8]
The epidermal growth factor receptor is a member of the ErbB family of receptors, a subfamily of four closely related receptor tyrosine kinases: EGFR (ErbB-1), HER2/neu (ErbB-2), Her 3 (ErbB-3) and Her 4 (ErbB-4). In many cancer types, mutations affecting EGFR expression or activity could result in cancer. [6]
All four ErbB receptor family members are nearly same in the structure having single-chain of modular glycoproteins. [4] This structure is made up of an extracellular region or ectodomain or ligand binding region that contains approximately 620 amino acids, a single transmembrane-spanning region containing approximately 23 residues, and an intracellular cytoplasmic tyrosine kinase domain ...
The human ERBB3 gene is located on the long arm of chromosome 12 (12q13). It is encoded by 23,651 base pairs and translates into 1342 amino acids. [5]During human development, ERBB3 is expressed in skin, bone, muscle, nervous system, heart, lungs, and intestinal epithelium. [6]
[3] [4] NRG1 is one of four proteins in the neuregulin family that act on the EGFR family of receptors. Neuregulin 1 is produced in numerous isoforms by alternative splicing, which allows it to perform a wide variety of functions. It is essential for the normal development of the nervous system and the heart. [5] [6]
Although the R-point has been linked to various activities involved in the regulation of G1–S transition of the mammalian cell cycle, the underlying mechanism remains unclear. Using single-cell measurements, Yao et al., shows that the Rb–E2F pathway functions as a bistable switch to convert graded serum inputs into all-or-none E2F responses ...
The pathway initiates the MAP kinase pathway as well as the PI3 kinase/AKT pathway, which in turn activates the NF-κB pathway. [60] In cancer cells the HER2 protein can be expressed up to 100 times more than in normal cells (2 million versus 20,000 per cell).
For example, autocrine Wnt signaling could provide a novel target for therapeutic intervention by means of Wnt antagonists or other molecules that interfere with ligand-receptor interactions of the Wnt pathway. [2] [3] In addition, VEGF-A production and VEGFR-2 activation on the surface of breast cancer cells indicates the presence of a ...