Search results
Results from the WOW.Com Content Network
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
The graph of this function is shown to the right. Since the graph of an affine(*) function is a line, the graph of a piecewise linear function consists of line segments and rays. The x values (in the above example −3, 0, and 3) where the slope changes are typically called breakpoints, changepoints, threshold values or knots. As in many ...
In mathematics, the term linear function refers to two distinct but related notions: [1] In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. [2] For distinguishing such a linear function from the other concept, the term affine function is often used ...
Here are all of the Dynkin graphs for affine groups up to 10 nodes. Extended Dynkin graphs are given as the ~ families, the same as the finite graphs above, with one node added. Other directed-graph variations are given with a superscript value (2) or (3), representing foldings of higher order groups. These are categorized as Twisted affine ...
In algebraic geometry, an affine variety (or, more generally, an affine algebraic set) is defined as the subset of an affine space that is the set of the common zeros of a set of so-called polynomial functions over the affine space. For defining a polynomial function over the affine space, one has to choose an affine frame.
A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.
A scalar function f:X→A 1 is regular at a point x if, in some open affine neighborhood of x, it is a rational function that is regular at x; i.e., there are regular functions g, h near x such that f = g/h and h does not vanish at x. [e] Caution: the condition is for some pair (g, h) not for all pairs (g, h); see Examples.
For example, the circle given by the equation + = has degree 2. The non-singular plane algebraic curves of degree 2 are called conic sections , and their projective completion are all isomorphic to the projective completion of the circle x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} (that is the projective curve of equation x 2 + y 2 − z 2 = 0 ...