Search results
Results from the WOW.Com Content Network
Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy and os found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases.
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.
If A is invertible, the Schur complement of the block A of the matrix M is the q × q matrix defined by /:=. In the case that A or D is singular, substituting a generalized inverse for the inverses on M/A and M/D yields the generalized Schur complement.
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I]
When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and (if applicable) the determinant are often referred to simply as the Jacobian in literature. [4]
This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its inverse: =, where Q −1 is the inverse of Q. An orthogonal matrix Q is necessarily invertible (with inverse Q −1 = Q T), unitary (Q −1 = Q ∗), where Q ∗ is the Hermitian adjoint (conjugate transpose) of Q, and therefore normal (Q ...