Search results
Results from the WOW.Com Content Network
The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.
The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1][2][3] early in the 20th century. [4][5] The model takes into account shear deformation and rotational bending effects, making it suitable for describing the behaviour of thick beams, sandwich composite beams, or beams subject to high- frequency ...
Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque.Torsion is expressed in either the pascal (Pa), an SI unit for newtons per square metre, or in pounds per square inch (psi) while torque is expressed in newton metres (N·m) or foot-pound force (ft·lbf).
Experiment measuring the force of gravity (1797–1798) Cavendish's diagram of his torsion pendulum, seen from above. The pendulum consists of two small spherical lead weights (h, h) hanging from a 6-foot horizontal wooden beam supported in the center by a fine torsion wire. The beam is protected from air currents inside a wooden box (A, A, A, A).
The field of strength of materials (also called mechanics of materials) typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into ...
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
• Beams and curved beams • Torsion, flat plates, and columns • Shells of revolution, pressure vessels, and pipes • Bodies under direct pressure and shear stress • Elastic stability • Dynamic and temperature stresses • Stress concentration • Fatigue and fracture • Stresses in fasteners and joints