Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Food such as fructose can increase the rate of alcohol metabolism. The effect can vary significantly from person to person, but a 100 g dose of fructose has been shown to increase alcohol metabolism by an average of 80%. In people with proteinuria and hematuria, fructose can cause falsely high BAC readings, due to kidney-liver metabolism. [106]
The enzyme responsible for the conversion of acetaldehyde to acetate, however, remains unaffected, which leads to differential rates of substrate catalysis and causes a buildup of toxic acetaldehyde, causing cell damage. [7] This provides some protection against excessive alcohol consumption and alcohol dependence (alcoholism).
The health benefits of a modest alcohol consumption reported in people of European descent appear not to exist among people of African descent. [18] Higher body masses and the prevalence of high levels of alcohol dehydrogenase in an individual increase alcohol tolerance, and both adult weight and enzymes vary with ethnicity.
Avoiding or restricting alcohol is the most straightforward way to prevent the symptoms of alcohol intolerance. [5] [6] [13] Tobacco use or exposure to secondhand smoke should be avoided, as smoking may increase levels of acetaldehyde. Certain medications may interact with alcohol and worsen symptoms.
While playing only a minor role in ethanol metabolism in average individuals, MEOS activity increases after chronic alcohol consumption. The MEOS pathway requires the CYP2E1 enzyme, part of the cytochrome P450 family of enzymes, to convert ethanol to acetaldehyde. Ethanol’s affinity for CYP2E1 is lower than its affinity for alcohol dehydrogenase.
Despite the bactericidal effects of ethanol, acidifying effects of fermentation, and low oxygen conditions of industrial alcohol production, bacteria that undergo lactic acid fermentation can contaminate such facilities because lactic acid has a low pKa of 3.86 to avoid decoupling the pH membrane gradient that supports regulated transport.
Several potential causes for the decline in fermentative activity have been investigated. Viability remained at or above 90%, internal pH remained near neutrality, and the specific activities of the glycolytic and alcohologenic enzymes (measured in vitro) remained high throughout batch fermentation.