Search results
Results from the WOW.Com Content Network
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
Efficiency of power plants, world total, 2008. Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges ...
Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.
Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Electric power, like mechanical power, is the rate of doing work, measured in watts, and represented by the letter P. The term wattage is used colloquially
Mechanical efficiency; Thermal efficiency, ratio of work done to thermal energy consumed; Efficient energy use, the objective of maximising efficiency In thermodynamics: Energy conversion efficiency, measure of second law thermodynamic loss; Radiation efficiency, ratio of radiated power to power absorbed at the terminals of an antenna
Energy efficiency may refer to: Energy efficiency (physics), the ratio between the useful output and input of an energy conversion process Electrical efficiency, useful power output per electrical power consumed; Mechanical efficiency, a ratio of the measured performance to the performance of an ideal machine
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
Since space is a near-vacuum, this process has close to 100% efficiency. Thermal energy is unique because it in most cases (willow) cannot be converted to other forms of energy. Only a difference in the density of thermal/heat energy (temperature) can be used to perform work, and the efficiency of this conversion will be (much) less than 100%.