Search results
Results from the WOW.Com Content Network
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
Name First elements Short description OEIS Mersenne prime exponents : 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... Primes p such that 2 p − 1 is prime.: A000043 ...
The idea becomes clearer by considering the general series 1 − 2x + 3x 2 − 4x 3 + 5x 4 − 6x 5 + &c. that arises while expanding the expression 1 ⁄ (1+x) 2, which this series is indeed equal to after we set x = 1.
Answer: 7 × 1 + 6 × 10 + 5 × 9 + 4 × 12 + 3 × 3 + 2 × 4 + 1 × 1 = 178 mod 13 = 9 Remainder = 9 A recursive method can be derived using the fact that = and that =. This implies that a number is divisible by 13 iff removing the first digit and subtracting 3 times that digit from the new first digit yields a number divisible by 13.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Lucas numbers have L 1 = 1, L 2 = 3, and L n = L n−1 + L n−2. Primefree sequences use the Fibonacci recursion with other starting points to generate sequences in which all numbers are composite. Letting a number be a linear function (other than the sum) of the 2 preceding numbers. The Pell numbers have P n = 2P n−1 + P n−2.
In one particularly cute response, another youngster said, “Adults learn stuff from children every day – once when I was 2 years old, my mum thought there were only 10 dinosaurs, but I told ...