Search results
Results from the WOW.Com Content Network
If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]
Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.
In mathematics, convergence tests are methods to determine if an infinite series converges or diverges. Pages in category "Convergence tests" The following 17 pages are in this category, out of 17 total.
The root test is therefore more generally applicable, but as a practical matter the limit is often difficult to compute for commonly seen types of series. Integral test. The series can be compared to an integral to establish convergence or divergence. Let () = be a positive and monotonically decreasing function. If
The test was devised by Gottfried Leibniz and is sometimes known as Leibniz's test, Leibniz's rule, or the Leibniz criterion. The test is only sufficient, not necessary, so some convergent alternating series may fail the first part of the test. [1] [2] [3] For a generalization, see Dirichlet's test. [4] [5] [6]
p-series, a convergence test in mathematics; Huawei P series, mobile phone series by Huawei; Ruger P series, pistols; P-series, of Sony Cyber-shot digital cameras; Sony Ericsson P series, a series of phones; P-series, of Vespa motor scooters
Note that sometimes a series like this is called a power series "around p", because the radius of convergence is the radius R of the largest interval or disc centred at p such that the series will converge for all points z strictly in the interior (convergence on the boundary of the interval or disc generally has to be checked separately).
Tests for uniform convergence include Weierstrass' M-test, Abel's uniform convergence test, Dini's test, and the Cauchy criterion. More sophisticated types of convergence of a series of functions can also be defined.