enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limit comparison test - Wikipedia

    en.wikipedia.org/wiki/Limit_comparison_test

    In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series.

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    1.6 Limit comparison test. 1.7 Cauchy condensation test. 1.8 Abel's test. 1.9 Absolute convergence test. 1.10 Alternating series test. 1.11 Dirichlet's test.

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    First is the general direct comparison test: [51] [52] [47] For any series ... alternate in sign. Second is the general limit comparison test: [53] [54] If ...

  5. Comparison test - Wikipedia

    en.wikipedia.org/wiki/Comparison_test

    Comparison test can mean: Limit comparison test , a method of testing for the convergence of an infinite series. Direct comparison test , a way of deducing the convergence or divergence of an infinite series or an improper integral.

  6. Category:Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Category:Convergence_tests

    Limit comparison test; N. Nth-term test; R. Ratio test; Root test; S. Stolz–Cesàro theorem; W. Weierstrass M-test This page was last edited on 3 November 2020, at ...

  7. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  8. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.

  9. Infinite product - Wikipedia

    en.wikipedia.org/wiki/Infinite_product

    is defined to be the limit of the partial products a 1 a 2...a n as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 ...