Search results
Results from the WOW.Com Content Network
Trapezoidal rule. The function f (x) (in blue) is approximated by a linear function (in red). In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: The trapezoidal rule works by approximating the region under the graph of ...
Trapezoidal rule (differential equations) In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method ...
Romberg's method. In numerical analysis, Romberg's method[1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally ...
Upper and lower methods make the approximation using the largest and smallest endpoint values of each subinterval, respectively. The values of the sums converge as the subintervals halve from top-left to bottom-right. In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum.
Heun's method. In mathematics and computational science, Heun's method may refer to the improved[1] or modified Euler's method (that is, the explicit trapezoidal rule[2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial ...
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
Another example for an implicit Runge–Kutta method is the trapezoidal rule. Its Butcher tableau is: The trapezoidal rule is a collocation method (as discussed in that article). All collocation methods are implicit Runge–Kutta methods, but not all implicit Runge–Kutta methods are collocation methods.
In mathematics, the Volterra integral equations are a special type of integral equations. [1] They are divided into two groups referred to as the first and the second kind. A linear Volterra equation of the first kind is. where f is a given function and x is an unknown function to be solved for. A linear Volterra equation of the second kind is.