Search results
Results from the WOW.Com Content Network
Integral geometry sprang from the principle that the mathematically natural probability models are those that are invariant under certain transformation groups. This topic emphasises systematic development of formulas for calculating expected values associated with the geometric objects derived from random points, and can in part be viewed as a ...
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution . [ 1 ] : 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
Buffon's needle was the earliest problem in geometric probability to be solved; [2] it can be solved using integral geometry. The solution for the sought probability p , in the case where the needle length l is not greater than the width t of the strips, is
The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...
In geometric probability theory, Wendel's theorem, named after James G. Wendel, gives the probability that N points distributed uniformly at random on an ()-dimensional hypersphere all lie on the same "half" of the hypersphere.
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...
This probability is given by the integral of this variable's PDF over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1.
In probability theory and statistics, the negative hypergeometric distribution describes probabilities for when sampling from a finite population without replacement in which each sample can be classified into two mutually exclusive categories like Pass/Fail or Employed/Unemployed. As random selections are made from the population, each ...