Search results
Results from the WOW.Com Content Network
The intermediate (thin) rectangles represent the hypotheses in the version space. Version space learning is a logical approach to machine learning, specifically binary classification. Version space learning algorithms search a predefined space of hypotheses, viewed as a set of logical sentences. Formally, the hypothesis space is a disjunction [1]
Model-free RL algorithms can start from a blank policy candidate and achieve superhuman performance in many complex tasks, including Atari games, StarCraft and Go.Deep neural networks are responsible for recent artificial intelligence breakthroughs, and they can be combined with RL to create superhuman agents such as Google DeepMind's AlphaGo.
Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...
Infer.NET is a free and open source.NET software library for machine learning. [2] It supports running Bayesian inference in graphical models and can also be used for probabilistic programming . [ 3 ]
NNI (Neural Network Intelligence) is a free and open-source AutoML toolkit developed by Microsoft. [3] [4] It is used to automate feature engineering, model compression, neural architecture search, and hyper-parameter tuning. [5] [6] The source code is licensed under MIT License and available on GitHub. [7]
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The RNNsearch model introduced an attention mechanism to seq2seq for machine translation to solve the bottleneck problem (of the fixed-size output vector), allowing the model to process long-distance dependencies more easily. The name is because it "emulates searching through a source sentence during decoding a translation".