enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Alternatively, the area can be calculated by dividing the kite into two congruent triangles and applying the SAS formula for their area. If a {\displaystyle a} and b {\displaystyle b} are the lengths of two sides of the kite, and θ {\displaystyle \theta } is the angle between, then the area is [ 26 ] A = a b ⋅ sin ⁡ θ . {\displaystyle ...

  3. Right kite - Wikipedia

    en.wikipedia.org/wiki/Right_kite

    A right kite with its circumcircle and incircle. The leftmost and rightmost vertices have right angles. In Euclidean geometry, a right kite is a kite (a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other) that can be inscribed in a circle. [1]

  4. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Not every parallelogram is a rhombus, though any parallelogram with perpendicular diagonals (the second property) is a rhombus. In general, any quadrilateral with perpendicular diagonals, one of which is a line of symmetry, is a kite. Every rhombus is a kite, and any quadrilateral that is both a kite and parallelogram is a rhombus.

  5. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    Area plays an important role in modern mathematics. In addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. [8]

  6. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    The area K of a tangential quadrilateral is given by K = r ⋅ s , {\displaystyle \displaystyle K=r\cdot s,} where s is the semiperimeter and r is the inradius .

  7. Talk:Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Talk:Kite_(geometry)

    In Euclidean geometry, a kite is a quadrilateral whose four sides can be grouped into two pairs of equal-length sides that are adjacent to each other. You could cite the reference "kite definition" in the "External Links" section, except that definition reads: A quadrilateral with two distinct pairs of equal adjacent sides. A kite-shaped figure.

  8. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The kite is a quadrilateral whose four interior angles are 72, 72, 72, and 144 degrees. The kite may be bisected along its axis of symmetry to form a pair of acute Robinson triangles (with angles of 36, 72 and 72 degrees). The dart is a non-convex quadrilateral whose four interior angles are 36, 72, 36, and 216 degrees. The dart may be bisected ...

  9. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.