Search results
Results from the WOW.Com Content Network
Rhetorical algebra, in which equations are written in full sentences. For example, the rhetorical form of + = is "The thing plus one equals two" or possibly "The thing plus 1 equals 2". Rhetorical algebra was first developed by the ancient Babylonians and remained dominant up to the 16th century.
In geometry, there was a clear need for a new set of axioms, which would be complete, and which in no way relied on pictures we draw or on our intuition of space. Such axioms, now known as Hilbert's axioms, were given by David Hilbert in 1894 in his dissertation Grundlagen der Geometrie (Foundations of Geometry).
1135 – Sharafeddin Tusi followed al-Khayyam's application of algebra to geometry, and wrote a treatise on cubic equations which "represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." [2]
Bhaskara Acharya writes the “Bijaganita” (“Algebra”), which is the first text that recognizes that a positive number has two square roots 1130: Al-Samawal gives a definition of algebra: “[it is concerned] with operating on unknowns using all the arithmetical tools, in the same way as the arithmetician operates on the known.” [16] c ...
Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, [a] which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental ...
This is a timeline of pure and applied mathematics history.It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic ...
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials ; the modern approach generalizes this in a few different aspects.
In addition to the familiar theorems of Euclidean geometry, the Elements was meant as an introductory textbook to all mathematical subjects of the time, such as number theory, algebra and solid geometry, [60] including proofs that the square root of two is irrational and that there are infinitely many prime numbers.