Search results
Results from the WOW.Com Content Network
In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.
A differential equation can be homogeneous in either of two respects. A first order differential equation is said to be homogeneous if it may be written (,) = (,), where f and g are homogeneous functions of the same degree of x and y. [1] In this case, the change of variable y = ux leads to an equation of the form
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.
In mathematics, the term "graded" has a number of meanings, mostly related: . In abstract algebra, it refers to a family of concepts: . An algebraic structure is said to be -graded for an index set if it has a gradation or grading, i.e. a decomposition into a direct sum = of structures; the elements of are said to be "homogeneous of degree i ".
In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous of degree n if all of its non-zero terms have degree n. The zero polynomial is homogeneous, and, as a homogeneous polynomial, its degree is undefined. [c] For example, x 3 y 2 + 7x 2 y 3 − 3x 5 is homogeneous of degree 5. For more details, see ...
For a given n the elements of are then called homogeneous elements of degree n. Graded vector spaces are common. For example the set of all polynomials in one or several variables forms a graded vector space, where the homogeneous elements of degree n are exactly the linear combinations of monomials of degree n.
Suppose that x is some homogeneous invariant of degree d > 0. Then x = a 1 i 1 + ... + a n i n. for some a j in the ring R because x is in the ideal I. We can assume that a j is homogeneous of degree d − deg i j for every j (otherwise, we replace a j by its homogeneous component of degree d − deg i j; if we do this for every j, the equation ...
Examples of graded algebras are common in mathematics: Polynomial rings. The homogeneous elements of degree n are exactly the homogeneous polynomials of degree n. The tensor algebra of a vector space V. The homogeneous elements of degree n are the tensors of order n, .