Search results
Results from the WOW.Com Content Network
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).
For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings. Temperature is the thermodynamic conjugate variable to entropy, thus the conjugate process would be an isothermal process, in which the system is thermally "connected" to a constant-temperature heat bath.
Since the total change in entropy must always be larger or equal to zero, we obtain the inequality W ≤ − Δ F . {\displaystyle W\leq -\Delta F.} We see that the total amount of work that can be extracted in an isothermal process is limited by the free-energy decrease, and that increasing the free energy in a reversible process requires work ...
Whether carried out reversible or irreversibly, the net entropy change of the system is zero, as entropy is a state function. During a closed cycle, the system returns to its original thermodynamic state of temperature and pressure. Process quantities (or path quantities), such as heat and work are process dependent.
The entropy change of a system excluding its surroundings can be well-defined as a small portion of heat transferred to the system during reversible process divided by the temperature of the system during this heat transfer: = The reversible process is quasistatic (i.e., it occurs without any dissipation, deviating only infinitesimally from the ...
The entropy change associated with any condensed system undergoing a reversible isothermal process approaches zero as the temperature at which it is performed approaches 0 K. That is, (,) (,) =. Or equivalently,
For a reversible process, heat is the product of the absolute temperature and the change in entropy of a body (entropy is a measure of disorder in a system). The difference between the change in internal energy, which is Δ U {\displaystyle \Delta U} , and the energy lost in the form of heat is what is called the "useful energy" of the body, or ...
The temperature-entropy conjugate pair is concerned with the transfer of energy, especially for a closed system. An isothermal process occurs at a constant temperature. An example would be a closed system immersed in and thermally connected with a large constant-temperature bath. Energy gained by the system, through work done on it, is lost to ...