Search results
Results from the WOW.Com Content Network
The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.
Trim drag, denoted as Dm in the diagram, is the component of aerodynamic drag on an aircraft created by the flight control surfaces, [1] mainly elevators and trimable horizontal stabilizers, when they are used to offset changes in pitching moment and centre of gravity during flight.
The rates of change of lift and drag with angle of attack (AoA) are called respectively the lift and drag coefficients C L and C D. The varying ratio of lift to drag with AoA is often plotted in terms of these coefficients. For any given value of lift, the AoA varies with speed. Graphs of C L and C D vs. speed are referred to as drag curves ...
The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.
A Gabrielli–von Karman diagram with the y-axis being the lift-to-drag ratio, which is the inverse of specific resistance. The von Kármán–Gabrielli diagram (also Gabrielli–von Kármán diagram, GvK diagram) is a diagram which compares the efficiency of transportation methods by plotting specific tractive force, or specific resistance (ε ...
An aircraft is streamlined from nose to tail to reduce drag making it advantageous to keep the sideslip angle near zero, though an aircraft may be deliberately "sideslipped" to increase drag and descent rate during landing, to keep aircraft heading same as runway heading during cross-wind landings and during flight with asymmetric power. [1]
In flight a powered aircraft can be considered as being acted on by four forces: lift, weight, thrust, and drag. [1] Thrust is the force generated by the engine (whether that engine be a jet engine, a propeller, or -- in exotic cases such as the X-15-- a rocket) and acts in a forward direction for the purpose of overcoming drag. [2]
The maximum range condition is obtained at maximum lift/drag ratio (L/DMAX) The maximal total range is the maximum distance an aircraft can fly between takeoff and landing . Powered aircraft range is limited by the aviation fuel energy storage capacity (chemical or electrical) considering both weight and volume limits. [ 1 ]