Search results
Results from the WOW.Com Content Network
[1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes. It extends the Mann–Whitney U test, which is used for comparing only two groups. The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at ...
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".
In statistics, one purpose for the analysis of variance (ANOVA) is to analyze differences in means between groups. The test statistic, F, assumes independence of observations, homogeneous variances, and population normality. ANOVA on ranks is a statistic designed for situations when the normality assumption has been violated.
So this sentence is wrong: "In statistics, the Kruskal-Wallis one-way analysis of variance by ranks (named after William Kruskal and W. Allen Wallis) is a non-parametric method for testing equality of population medians among groups" —Preceding unsigned comment added by 71.76.4.55 03:18, 4 October 2007 (UTC)
[1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]
Some popular designs use the following types of ANOVA: One-way ANOVA is used to test for differences among two or more independent groups (means), e.g. different levels of urea application in a crop, or different levels of antibiotic action on several different bacterial species, [55] or different levels of effect of some medicine on groups of ...
The most common non-parametric test for the one-factor model is the Kruskal-Wallis test. The Kruskal-Wallis test is based on the ranks of the data. The advantage of the Van Der Waerden test is that it provides the high efficiency of the standard ANOVA analysis when the normality assumptions are in fact satisfied, but it also provides the ...
The Sign test (with a two-sided alternative) is equivalent to a Friedman test on two groups. Kendall's W is a normalization of the Friedman statistic between 0 {\textstyle 0} and 1 {\textstyle 1} . The Wilcoxon signed-rank test is a nonparametric test of nonindependent data from only two groups.