enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.

  3. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  4. Ideal gas - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas

    The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.

  5. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.

  6. Departure function - Wikipedia

    en.wikipedia.org/wiki/Departure_function

    In thermodynamics, a departure function is defined for any thermodynamic property as the difference between the property as computed for an ideal gas and the property of the species as it exists in the real world, for a specified temperature T and pressure P. Common departure functions include those for enthalpy, entropy, and internal energy.

  7. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    Ideal gas; Real gas; ... the Gibbs free energy or free enthalpy is most commonly used as ... Computing the free energy is an intractable problem for all but the ...

  8. Redlich–Kwong equation of state - Wikipedia

    en.wikipedia.org/wiki/Redlich–Kwong_equation_of...

    p is the gas pressure; R is the gas constant, T is temperature, V m is the molar volume (V/n), a is a constant that corrects for attractive potential of molecules, and; b is a constant that corrects for volume. The constants are different depending on which gas is being analyzed. The constants can be calculated from the critical point data of ...

  9. Bridgman's thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Bridgman's_thermodynamic...

    Many thermodynamic equations are expressed in terms of partial derivatives. For example, the expression for the heat capacity at constant pressure is: = which is the partial derivative of the enthalpy with respect to temperature while holding pressure constant.