enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic radius - Wikipedia

    en.wikipedia.org/wiki/Atomic_radius

    The following table shows empirically measured covalent radii for the elements, as published by J. C. Slater in 1964. [17] The values are in picometers (pm or 1×10 −12 m), with an accuracy of about 5 pm. The shade of the box ranges from red to yellow as the radius increases; gray indicates lack of data.

  3. Atomic radii of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Atomic_radii_of_the...

    Under some definitions, the value of the radius may depend on the atom's state and context. [1] Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group ...

  4. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The atomic number increases within the same period while moving from left to right, which in turn increases the effective nuclear charge. The increase in attractive forces reduces the atomic radius of elements. When we move down the group, the atomic radius increases due to the addition of a new shell. [5] [6] [7]

  5. Ionic radius - Wikipedia

    en.wikipedia.org/wiki/Ionic_radius

    Nevertheless, ionic radius values are sufficiently transferable to allow periodic trends to be recognized. As with other types of atomic radius, ionic radii increase on descending a group. Ionic size (for the same ion) also increases with increasing coordination number, and an ion in a high-spin state will be larger than the same ion in a low ...

  6. van der Waals radius - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_radius

    The van der Waals radius, r w, of an atom is the radius of an imaginary hard sphere representing the distance of closest approach for another atom. It is named after Johannes Diderik van der Waals, winner of the 1910 Nobel Prize in Physics, as he was the first to recognise that atoms were not simply points and to demonstrate the physical consequences of their size through the van der Waals ...

  7. Core electron - Wikipedia

    en.wikipedia.org/wiki/Core_electron

    Core charge is a convenient way of explaining trends in the periodic table. [4] Since the core charge increases as you move across a row of the periodic table, the outer-shell electrons are pulled more and more strongly towards the nucleus and the atomic radius decreases. This can be used to explain a number of periodic trends such as atomic ...

  8. Noble gas - Wikipedia

    en.wikipedia.org/wiki/Noble_gas

    The attractive force increases with the size of the atom as a result of the increase in polarizability and the decrease in ionization potential. This results in systematic group trends: as one goes down group 18, the atomic radius increases, and with it the interatomic forces increase, resulting in an increasing melting point, boiling point ...

  9. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    Nonmetallic character increases going from the bottom left of the periodic table to the top right. The first periodic table to become generally accepted was that of the Russian chemist Dmitri Mendeleev in 1869; he formulated the periodic law as a dependence of chemical properties on atomic mass.