Search results
Results from the WOW.Com Content Network
Separation of variables may be possible in some coordinate systems but not others, [2] and which coordinate systems allow for separation depends on the symmetry properties of the equation. [3] Below is an outline of an argument demonstrating the applicability of the method to certain linear equations, although the precise method may differ in ...
Laplace's equation on is an example of a partial differential equation that admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates. (This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of ...
list of nonlinear partial differential equations; Boundary condition; Boundary value problem. Dirichlet problem, Dirichlet boundary condition; Neumann boundary condition; Stefan problem; Wiener–Hopf problem; Separation of variables; Green's function; Elliptic partial differential equation; Singular perturbation; Cauchy–Kovalevskaya theorem ...
In the method of separation of variables, one reduces a PDE to a PDE in fewer variables, which is an ordinary differential equation if in one variable – these are in turn easier to solve. This is possible for simple PDEs, which are called separable partial differential equations , and the domain is generally a rectangle (a product of intervals).
An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory [5] [6] [7] Chrystal's equation: 1 + + + = Generalization of Clairaut's equation with a singular solution [8] Clairaut's equation: 1
An orthogonal basis of spherical harmonics in higher dimensions can be constructed inductively by the method of separation of variables, by solving the Sturm-Liouville problem for the spherical Laplacian = + where φ is the axial coordinate in a spherical coordinate system on S n−1.
The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).