Search results
Results from the WOW.Com Content Network
In the oil and gas sector, anomaly detection is not just crucial for maintenance and safety, but also for environmental protection. [21] Aljameel et al. propose an advanced machine learning-based model for detecting minor leaks in oil and gas pipelines, a task traditional methods may miss. [21]
Unsupervised Nature: The model does not rely on labeled data, making it suitable for anomaly detection in various domains. [ 8 ] Feature-agnostic: The algorithm adapts to different datasets without making assumptions about feature distributions.
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
Autoencoders are applied to many problems, including facial recognition, [5] feature detection, [6] anomaly detection, and learning the meaning of words. [ 7 ] [ 8 ] In terms of data synthesis , autoencoders can also be used to randomly generate new data that is similar to the input (training) data.
In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.
In signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are statistically independent from each other. [1]
Simplified example of training a neural network for object detection: The network is trained on multiple images depicting either starfish or sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape.
In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.