enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  3. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Chapter 8 (The solution of equations of the fifth degree at the Wayback Machine (archived 31 March 2010)) gives a description of the solution of solvable quintics x 5 + cx + d. Victor S. Adamchik and David J. Jeffrey, "Polynomial transformations of Tschirnhaus, Bring and Jerrard," ACM SIGSAM Bulletin, Vol. 37, No. 3, September 2003, pp. 90–94.

  4. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    In particular, the real roots are mostly located near ±1, and, moreover, their expected number is, for a large degree, less than the natural logarithm of the degree. If the coefficients are Gaussian distributed with a mean of zero and variance of σ then the mean density of real roots is given by the Kac formula [21] [22]

  5. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  6. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  7. Algebraic geometry - Wikipedia

    en.wikipedia.org/wiki/Algebraic_geometry

    Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems.Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

  8. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics. A prominent example is Fermat's Last Theorem . This conjecture was stated in 1637 by Pierre de Fermat, but it was proved only in 1994 by Andrew Wiles , who used tools including scheme theory from algebraic geometry , category ...

  9. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    According to Eutocius, Archytas was the first to solve the problem of doubling the cube (the so-called Delian problem) with an ingenious geometric construction. [ 2 ] [ 3 ] [ 4 ] The nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837.