Search results
Results from the WOW.Com Content Network
In algebraic geometry, a cone is a generalization of a vector bundle. Specifically, given a scheme X , the relative Spec C = Spec X R {\displaystyle C=\operatorname {Spec} _{X}R}
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
In algebraic geometry, a surface of general type is an algebraic surface with Kodaira dimension 2. Because of Chow's theorem any compact complex manifold of dimension 2 and with Kodaira dimension 2 will actually be an algebraic surface, and in some sense most surfaces are in this class.
The cone of curves is defined to be the convex cone of linear combinations of curves with nonnegative real coefficients in the real vector space () of 1-cycles modulo numerical equivalence. The vector spaces N 1 ( X ) {\displaystyle N^{1}(X)} and N 1 ( X ) {\displaystyle N_{1}(X)} are dual to each other by the intersection pairing, and the nef ...
In mathematics, specifically algebraic topology, the mapping cylinder [1] of a continuous function between topological spaces and is the quotient = (([,])) / where the denotes the disjoint union, and ~ is the equivalence relation generated by
The definition of the tangent cone can be extended to abstract algebraic varieties, and even to general Noetherian schemes. Let X be an algebraic variety, x a point of X, and (O X,x, m) be the local ring of X at x. Then the tangent cone to X at x is the spectrum of the associated graded ring of O X,x with respect to the m-adic filtration:
In chemistry, topology provides a way of describing and predicting the molecular structure within the constraints of three-dimensional (3-D) space. Given the determinants of chemical bonding and the chemical properties of the atoms, topology provides a model for explaining how the atoms ethereal wave functions must fit together.
An affine convex cone is the set resulting from applying an affine transformation to a convex cone. [8] A common example is translating a convex cone by a point p: p + C. Technically, such transformations can produce non-cones. For example, unless p = 0, p + C is not a linear cone. However, it is still called an affine convex cone.