enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Preload (cardiology) - Wikipedia

    en.wikipedia.org/wiki/Preload_(cardiology)

    Preload is related to the ventricular end-diastolic volume; a higher end-diastolic volume implies a higher preload. However, the relationship is not simple because of the restriction of the term preload to single myocytes. Preload can still be approximated by the inexpensive echocardiographic measurement end-diastolic volume or EDV.

  3. Afterload - Wikipedia

    en.wikipedia.org/wiki/Afterload

    Afterload is the pressure that the heart must work against to eject blood during systole (ventricular contraction). Afterload is proportional to the average arterial pressure. [ 1 ] As aortic and pulmonary pressures increase, the afterload increases on the left and right ventricles respectively.

  4. Cardiac physiology - Wikipedia

    en.wikipedia.org/wiki/Cardiac_physiology

    A mean SV for a resting 70-kg (150-lb) individual would be approximately 70 mL. There are several important variables, including size of the heart, physical and mental condition of the individual, sex, contractility, duration of contraction, preload or EDV, and afterload or resistance. Normal range for SV would be 55–100 mL.

  5. Pressure–volume loop analysis in cardiology - Wikipedia

    en.wikipedia.org/wiki/Pressure–volume_loop...

    Afterload is the mean tension produced by a chamber of the heart in order to contract. It can also be considered as the ‘load’ that the heart must eject blood against. Afterload is, therefore, a consequence of aortic large vessel compliance, wave reflection, and small vessel resistance (LV afterload) or similar pulmonary artery parameters (RV afterload

  6. Frank–Starling law - Wikipedia

    en.wikipedia.org/wiki/Frank–Starling_law

    The three curves illustrate that shifts along the same line indicate a change in preload, while shifts from one line to another indicate a change in afterload or contractility. A blood volume increase would cause a shift along the line to the right, which increases left ventricular end diastolic volume (x axis), and therefore also increases ...

  7. End-diastolic volume - Wikipedia

    en.wikipedia.org/wiki/End-diastolic_volume

    Because greater EDVs cause greater distention of the ventricle, EDV is often used synonymously with preload, which refers to the length of the sarcomeres in cardiac muscle prior to contraction . An increase in EDV increases the preload on the heart and, through the Frank-Starling mechanism of the heart, increases the amount of blood ejected ...

  8. Myocardial contractility - Wikipedia

    en.wikipedia.org/wiki/Myocardial_contractility

    Heart rate; Conduction velocity; Preload; Afterload; Contractility; By this model, if myocardial performance changes while preload, afterload, heart rate, and conduction velocity are all held constant, then the change in performance must be due to a change in contractility. However, changes in contractility alone generally do not occur.

  9. Volume overload - Wikipedia

    en.wikipedia.org/wiki/Volume_overload

    There is an optimum end-diastolic volume at which maximum stroke volume and cardiac output is achieved. Beyond this, there is volume overload , and stroke volume is diminished. Volume overload refers to the state of one of the chambers of the heart in which too large a volume of blood exists within it for it to function efficiently.