enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    The pins-and-string construction of an ellipsoid is a transfer of the idea constructing an ellipse using two pins and a string (see diagram). A pins-and-string construction of an ellipsoid of revolution is given by the pins-and-string construction of the rotated ellipse. The construction of points of a triaxial ellipsoid is more complicated.

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface.

  5. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M.

  6. Superellipse - Wikipedia

    en.wikipedia.org/wiki/Superellipse

    Examples of superellipses for =, =. A superellipse, also known as a Lamé curve after Gabriel Lamé, is a closed curve resembling the ellipse, retaining the geometric features of semi-major axis and semi-minor axis, and symmetry about them, but defined by an equation that allows for various shapes between a rectangle and an ellipse.

  7. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    A rotation of the original hyperbola by ... This is the equation of an ellipse (<) or a parabola (= ... can be described by several parametric equations:

  8. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    From this equation one gets the following properties of the evolute: At points with ′ = the evolute is not regular. That means: at points with maximal or minimal curvature (vertices of the given curve) the evolute has cusps. (See the diagrams of the evolutes of the parabola, the ellipse, the cycloid and the nephroid.)

  9. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    Legendre (1811, p. 180) pointed out that the equation for s is the same as the equation for the arc on an ellipse with semi-axes b √ 1 + e′ 2 cos 2 α 0 and b. In order to express the equation for λ in terms of σ, we write = ⁡ ⁡,