Search results
Results from the WOW.Com Content Network
In LVL, the direction of the wood grain is always parallel to the length of the billet. [6] The stacking of these veneers into a complete board, called a billet, creates a single piece of LVL sharing a common direction of wood grain. [1] LVL is typically rated by the manufacturer for elastic modulus and allowable bending stress.
A flitch beam is a simple form of composite construction sometimes used in North American light frame construction. [3] This occurs when a steel plate is sandwiched between two wood joists and bolted together. A flitch beam can typically support heavier loads over a longer span than an all-wood beam of the same cross section.
Timber-framed structures differ from conventional wood-framed buildings in several ways. Timber framing uses fewer, larger wooden members, commonly timbers in the range of 15 to 30 cm (6 to 12 in), while common wood framing uses many more timbers with dimensions usually in the 5- to 25-cm (2- to 10-in) range.
A double-T beam or double tee beam is a load-bearing structure that resemble two T-beams connected to each other. Double tees are manufactured from prestressed concrete using pretensioning beds of about 200-foot (61 m) to 500-foot (150 m) long. The strong bond of the flange (horizontal section) and the two webs (vertical members) creates a ...
A flitch beam (or flitched beam) is a compound beam used in the construction of houses, decks, and other primarily wood-frame structures. Typically, the flitch beam is made up of a vertical steel plate sandwiched between two wood beams, the three layers being held together with bolts .
1.0 x Dead Load + 1.0 x Live Load. Different load cases would be used for different loading conditions. For example, in the case of design for fire a load case of 1.0 x Dead Load + 0.8 x Live Load may be used, as it is reasonable to assume everyone has left the building if there is a fire.
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.
l B: Length of the reference beam (between the loading points, symmetrically placed relative to the loading points) in mm; D L: Distance between the reference beam and the main beam (centered between the loading points) in mm; E: Bending modulus in kN/mm²; l v: Span length in mm; X H: End of bending modulus determination in kN