Search results
Results from the WOW.Com Content Network
Moreover, the final row and the final column give the marginal probability distribution for A and the marginal probability distribution for B respectively. For example, for A the first of these cells gives the sum of the probabilities for A being red, regardless of which possibility for B in the column above the cell occurs, as 2 / 3 .
The numerical method may consist of assuming a range of p values, then applying the distribution fitting procedure repeatedly for all the assumed p values, and finally selecting the value of p for which the sum of squares of deviations of calculated probabilities from measured frequencies (chi squared) is minimum, as is done in CumFreq.
Subsets of data can be selected by column name, index, or Boolean expressions. For example, df[df['col1'] > 5] will return all rows in the DataFrame df for which the value of the column col1 exceeds 5. [4]: 126–128 Data can be grouped together by a column value, as in df['col1'].groupby(df['col2']), or by a function which is applied to the index.
For example, suppose P(L = red) = 0.2, P(L = yellow) = 0.1, and P(L = green) = 0.7. Multiplying each column in the conditional distribution by the probability of that column occurring results in the joint probability distribution of H and L, given in the central 2×3 block of entries. (Note that the cells in this 2×3 block add up to 1).
The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to
Use of a user-defined function sq(x) in Microsoft Excel. The named variables x & y are identified in the Name Manager. The function sq is introduced using the Visual Basic editor supplied with Excel. Subroutine in Excel calculates the square of named column variable x read from the spreadsheet, and writes it into the named column variable y.
Log-likelihood function is the logarithm of the likelihood function, often denoted by a lowercase l or , to contrast with the uppercase L or for the likelihood. Because logarithms are strictly increasing functions, maximizing the likelihood is equivalent to maximizing the log-likelihood.
For the first function (), the exponent can be replaced by any other irrational number, and the function will remain transcendental. For the second and third functions f 2 ( x ) {\displaystyle f_{2}(x)} and f 3 ( x ) {\displaystyle f_{3}(x)} , the base e {\displaystyle e} can be replaced by any other positive real number base not equaling 1 ...