enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Instead of just having one neuron in the output layer, with binary output, one could have N binary neurons leading to multi-class classification. In practice, the last layer of a neural network is usually a softmax function layer, which is the algebraic simplification of N logistic classifiers, normalized per class by the sum of the N-1 other ...

  3. Binary classification - Wikipedia

    en.wikipedia.org/wiki/Binary_classification

    Binary classification is the task of classifying the elements of a set into one of two groups (each called class). Typical binary classification problems include: Medical testing to determine if a patient has a certain disease or not; Quality control in industry, deciding whether a specification has been met;

  4. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.

  5. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Folding activation functions are extensively used in the pooling layers in convolutional neural networks, and in output layers of multiclass classification networks. These activations perform aggregation over the inputs, such as taking the mean, minimum or maximum. In multiclass classification the softmax activation is often used.

  6. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    In machine learning, the perceptron is an algorithm for supervised learning of binary classifiers.A binary classifier is a function which can decide whether or not an input, represented by a vector of numbers, belongs to some specific class. [1]

  7. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    To evaluate a classifier, one compares its output to another reference classification – ideally a perfect classification, but in practice the output of another gold standard test – and cross tabulates the data into a 2×2 contingency table, comparing the two classifications.

  8. Classification rule - Wikipedia

    en.wikipedia.org/wiki/Classification_rule

    In binary classification, a better understood task, only two classes are involved, whereas multiclass classification involves assigning an object to one of several classes. [2] Since many classification methods have been developed specifically for binary classification, multiclass classification often requires the combined use of multiple ...

  9. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...