Search results
Results from the WOW.Com Content Network
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
A two-dimensional array stored as a one-dimensional array of one-dimensional arrays (rows). An Iliffe vector is an alternative to a multidimensional array structure. It uses a one-dimensional array of references to arrays of one dimension less. For two dimensions, in particular, this alternative structure would be a vector of pointers to ...
Some programming languages utilize doubly subscripted arrays (or arrays of arrays) to represent an m-by-n matrix. Some programming languages start the numbering of array indexes at zero, in which case the entries of an m -by- n matrix are indexed by 0 ≤ i ≤ m − 1 {\displaystyle 0\leq i\leq m-1} and 0 ≤ j ≤ n − 1 {\displaystyle 0\leq ...
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" ( AoS ), in which all the elements for a given column are stored contiguously in memory.
If B is another linear map from the preceding vector space of dimension m, into a vector space of dimension p, it is represented by a matrix . A straightforward computation shows that the matrix of the composite map B ∘ A {\displaystyle B\circ A} is the matrix product B A . {\displaystyle \mathbf {BA} .}
Consider the two subspaces = (), and = (), of the vector space .. Using the standard basis, we create the following matrix of dimension (+) (): ().Using elementary row operations, we transform this matrix into the following matrix: