enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L-infinity - Wikipedia

    en.wikipedia.org/wiki/L-infinity

    is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    Indeed, two Lebesgue-measurable functions may be constructed in such a way as to make their composition non-Lebesgue-measurable. The (pointwise) supremum, infimum, limit superior, and limit inferior of a sequence (viz., countably many) of real-valued measurable functions are all measurable as well. [1] [4]

  4. Layer cake representation - Wikipedia

    en.wikipedia.org/wiki/Layer_cake_representation

    Layer cake representation. In mathematics, the layer cake representation of a non-negative, real-valued measurable function defined on a measure space (,,) is the formula = (,) (),

  5. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  6. Locally integrable function - Wikipedia

    en.wikipedia.org/wiki/Locally_integrable_function

    The classical definition of a locally integrable function involves only measure theoretic and topological [4] concepts and can be carried over abstract to complex-valued functions on a topological measure space (X, Σ, μ): [5] however, since the most common application of such functions is to distribution theory on Euclidean spaces, [2] all ...

  7. Uniform integrability - Wikipedia

    en.wikipedia.org/wiki/Uniform_integrability

    Uniform integrability is an extension to the notion of a family of functions being dominated in which is central in dominated convergence. Several textbooks on real analysis and measure theory use the following definition: [1] [2] Definition A: Let (,,) be a positive measure space.

  8. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable. If A is Lebesgue-measurable and x is an element of R n, then the translation of A by x, defined by A + x = {a + x : a ∈ A}, is also Lebesgue-measurable and has the same measure as A.

  9. Prékopa–Leindler inequality - Wikipedia

    en.wikipedia.org/wiki/Prékopa–Leindler_inequality

    Recall that the essential supremum of a measurable function f : R n → R is defined by ⁡ = {[, +] ()}. This notation allows the following essential form of the Prékopa–Leindler inequality: let 0 < λ < 1 and let f, g ∈ L 1 (R n; [0, +∞)) be non-negative absolutely integrable functions.