enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L-infinity - Wikipedia

    en.wikipedia.org/wiki/L-infinity

    is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    Indeed, two Lebesgue-measurable functions may be constructed in such a way as to make their composition non-Lebesgue-measurable. The (pointwise) supremum, infimum, limit superior, and limit inferior of a sequence (viz., countably many) of real-valued measurable functions are all measurable as well. [1] [4]

  4. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().

  5. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    Let L 2 (X, μ) be the space of those complex-valued measurable functions on X for which the Lebesgue integral of the square of the absolute value of the function is finite, i.e., for a function f in L 2 (X, μ), | | <, and where functions are identified if and only if they differ only on a set of measure zero.

  6. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable. If A is Lebesgue-measurable and x is an element of R n, then the translation of A by x, defined by A + x = {a + x : a ∈ A}, is also Lebesgue-measurable and has the same measure as A.

  7. Bochner space - Wikipedia

    en.wikipedia.org/wiki/Bochner_space

    Bochner spaces are often used in the functional analysis approach to the study of partial differential equations that depend on time, e.g. the heat equation: if the temperature (,) is a scalar function of time and space, one can write (()) ():= (,) to make a family () (parametrized by time) of functions of space, possibly in some Bochner space.

  8. Locally integrable function - Wikipedia

    en.wikipedia.org/wiki/Locally_integrable_function

    In mathematics, a locally integrable function (sometimes also called locally summable function) [1] is a function which is integrable (so its integral is finite) on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to L p spaces, but its members are not ...

  9. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    More generally, when the measure space on which the functions are defined is also a locally compact topological space (as is the case with the real numbers R), measures compatible with the topology in a suitable sense (Radon measures, of which the Lebesgue measure is an example) an integral with respect to them can be defined in the same manner ...

  1. Related searches measurable functions in l2 memory activities are best defined as the study

    non measurable functionnon measurable set function
    what is a measureable function