Search results
Results from the WOW.Com Content Network
A function prologue typically does the following actions if the architecture has a base pointer (also known as frame pointer) and a stack pointer: Pushes current base pointer onto the stack, so it can be restored later. Value of base pointer is set to the address of stack pointer (which is pointed to the top of the stack) so that the base ...
x86 assembly language includes instructions for a stack-based floating-point unit (FPU). The FPU was an optional separate coprocessor for the 8086 through the 80386, it was an on-chip option for the 80486 series, and it is a standard feature in every Intel x86 CPU since the 80486, starting with the Pentium.
x86 word, minimum size of short and int in C −32,768 to +32,767 0 to 65,535 4 bytes 32 bits x86 double word, minimum size of long in C, actual size of int for most modern C compilers, [8] pointer for IA-32-compatible processors −2,147,483,648 to +2,147,483,647 0 to 4,294,967,295 8 bytes 64 bits
A pointer a pointing to the memory address associated with a variable b, i.e., a contains the memory address 1008 of the variable b.In this diagram, the computing architecture uses the same address space and data primitive for both pointers and non-pointers; this need should not be the case.
In many programming environments for C and C-derived languages on 64-bit machines, int variables are still 32 bits wide, but long integers and pointers are 64 bits wide. These are described as having an LP64 data model , which is an abbreviation of "Long, Pointer, 64".
A computer program can access an address given explicitly – in low-level programming this is usually called an absolute address, or sometimes a specific address, and is known as pointer data type in higher-level languages. But a program can also use relative address which specifies a location in relation to somewhere else (the base address).
Below is the full 8086/8088 instruction set of Intel (81 instructions total). [2] These instructions are also available in 32-bit mode, in which they operate on 32-bit registers (eax, ebx, etc.) and values instead of their 16-bit (ax, bx, etc.) counterparts.
Pointer formats are known as near, far, or huge. Near pointers are 16-bit offsets within the reference segment, i.e. DS for data and CS for code. They are the fastest pointers, but are limited to point to 64 KB of memory (to the associated segment of the data type). Near pointers can be held in registers (typically SI and DI).