Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Since quaternionic multiplication is noncommutative, care must be taken to preserve the order of the factors when computing the product of matrices. The identity for this multiplication is, as expected, the diagonal matrix I = diag(1, 1, ... , 1). Multiplication follows the usual laws of associativity and distributivity. The trace of a matrix ...
The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix .
The term diagonal matrix may sometimes refer to a rectangular diagonal matrix, which is an m-by-n matrix with all the entries not of the form d i,i being zero. For example: [ 1 0 0 0 4 0 0 0 − 3 0 0 0 ] or [ 1 0 0 0 0 0 4 0 0 0 0 0 − 3 0 0 ] {\displaystyle {\begin{bmatrix}1&0&0\\0&4&0\\0&0&-3\\0&0&0\\\end{bmatrix}}\quad {\text{or}}\quad ...
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication). Two Toeplitz matrices may be added in O ( n ) {\displaystyle O(n)} time (by storing only one value of each diagonal) and multiplied in O ( n 2 ) {\displaystyle O(n^{2})} time.
The ordinary matrix multiplication A B can be performed by setting α to one and C to an all-zeros matrix of the appropriate size. Also included in Level 3 are routines for computing B ← α T − 1 B , {\displaystyle {\boldsymbol {B}}\leftarrow \alpha {\boldsymbol {T}}^{-1}{\boldsymbol {B}},}
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.