enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  4. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    A square diagonal matrix is a symmetric matrix, so this can also be called a symmetric diagonal matrix. The following matrix is square diagonal matrix: [] If the entries are real numbers or complex numbers, then it is a normal matrix as well.

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  6. Toeplitz matrix - Wikipedia

    en.wikipedia.org/wiki/Toeplitz_matrix

    The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication). Two Toeplitz matrices may be added in O ( n ) {\displaystyle O(n)} time (by storing only one value of each diagonal) and multiplied in O ( n 2 ) {\displaystyle O(n^{2})} time.

  7. Bilinear map - Wikipedia

    en.wikipedia.org/wiki/Bilinear_map

    To see this, choose a basis for V and W; then each bilinear map can be uniquely represented by the matrix B(e i, f j), and vice versa. Now, if X is a space of higher dimension, we obviously have dim L ( V , W ; X ) = dim V × dim W × dim X .

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  9. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Conference matrix: A square matrix with zero diagonal and +1 and −1 off the diagonal, such that C T C is a multiple of the identity matrix. Complex Hadamard matrix: A matrix with all rows and columns mutually orthogonal, whose entries are unimodular. Compound matrix: A matrix whose entries are generated by the determinants of all minors of a ...