enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    The tree with the minimal weighted path length is, by definition, statically optimal. But weighted path lengths have an interesting property. Let E be the weighted path length of a binary tree, E L be the weighted path length of its left subtree, and E R be the weighted path length of its right subtree. Also let W be the sum of all the ...

  3. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.

  4. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full binary tree.

  5. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  6. Day–Stout–Warren algorithm - Wikipedia

    en.wikipedia.org/wiki/Day–Stout–Warren_algorithm

    The Day–Stout–Warren (DSW) algorithm is a method for efficiently balancing binary search trees – that is, decreasing their height to O(log n) nodes, where n is the total number of nodes. Unlike a self-balancing binary search tree , it does not do this incrementally during each operation, but periodically, so that its cost can be amortized ...

  7. Order statistic tree - Wikipedia

    en.wikipedia.org/wiki/Order_statistic_tree

    Order-statistic trees can be further amended with bookkeeping information to maintain balance (e.g., tree height can be added to get an order statistic AVL tree, or a color bit to get a red–black order statistic tree). Alternatively, the size field can be used in conjunction with a weight-balancing scheme at no additional storage cost. [4]

  8. WAVL tree - Wikipedia

    en.wikipedia.org/wiki/WAVL_tree

    WAVL trees are named after AVL trees, another type of balanced search tree, and are closely related both to AVL trees and red–black trees, which all fall into a common framework of rank balanced trees. Like other balanced binary search trees, WAVL trees can handle insertion, deletion, and search operations in time O(log n) per operation. [1] [2]

  9. Geometry of binary search trees - Wikipedia

    en.wikipedia.org/.../Geometry_of_binary_search_trees

    The cost of a search is modeled by assuming that the search tree algorithm has a single pointer into a binary search tree, which at the start of each search points to the root of the tree. The algorithm may then perform any sequence of the following operations: Move the pointer to its left child. Move the pointer to its right child.