Search results
Results from the WOW.Com Content Network
The simplest probabilistic primality test is the Fermat primality test (actually a compositeness test). It works as follows: Given an integer n, choose some integer a coprime to n and calculate a n − 1 modulo n. If the result is different from 1, then n is composite. If it is 1, then n may be prime.
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2 340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2.
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...
The Baillie–PSW primality test is a probabilistic or possibly deterministic primality testing algorithm that determines whether a number is composite or is a probable prime. It is named after Robert Baillie, Carl Pomerance , John Selfridge , and Samuel Wagstaff .
For example, the popular Miller–Rabin primality test can be formulated as a P/poly algorithm: the "advice" is a list of candidate values to test. It is possible to precompute a list of O ( n ) {\displaystyle O(n)} values such that every composite n -bit number will be certain to have a witness a in the list. [ 3 ]
By testing the above conditions to several bases, one gets somewhat more powerful primality tests than by using one base alone. For example, there are only 13 numbers less than 25·10 9 that are strong pseudoprimes to bases 2, 3, and 5 simultaneously.
Atlantic City algorithm is a probabilistic polynomial time algorithm (PP Complexity Class) that answers correctly at least 75% of the time (or, in some versions, some other value greater than 50%). The term "Atlantic City" was first introduced in 1982 by J. Finn in an unpublished manuscript entitled Comparison of probabilistic tests for primality .