Search results
Results from the WOW.Com Content Network
The simplest probabilistic primality test is the Fermat primality test (actually a compositeness test). It works as follows: Given an integer n, choose some integer a coprime to n and calculate a n − 1 modulo n. If the result is different from 1, then n is composite. If it is 1, then n may be prime.
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
The test was developed by Hans Riesel and it is based on the Lucas–Lehmer primality test. It is the fastest deterministic algorithm known for numbers of that form. [citation needed] For numbers of the form N = k ⋅ 2 n + 1 (Proth numbers), either application of Proth's theorem (a Las Vegas algorithm) or one of the deterministic proofs ...
The algorithm can be written in pseudocode as follows: algorithm lucas_primality_test is input: n > 2, an odd integer to be tested for primality. k, a parameter that determines the accuracy of the test. output: prime if n is prime, otherwise composite or possibly composite. determine the prime factors of n−1.
[1]: Def. 3.32 In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. [2] The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341.
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...
By testing the above conditions to several bases, one gets somewhat more powerful primality tests than by using one base alone. For example, there are only 13 numbers less than 25·10 9 that are strong pseudoprimes to bases 2, 3, and 5 simultaneously.