enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.

  3. Main diagonal - Wikipedia

    en.wikipedia.org/wiki/Main_diagonal

    For a square matrix, the diagonal (or main diagonal or principal diagonal) is the diagonal line of entries running from the top-left corner to the bottom-right corner. [1] [2] [3] For a matrix with row index specified by and column index specified by , these would be entries with =.

  4. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  5. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix. Hilbert matrix: a ij = (i + j − 1) −1. A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j).

  6. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    Since the set F is both a set of eigenvectors for matrix A and it spans some arbitrary vector space, then we say that there exists a matrix which is a diagonal matrix that is similar to . In other words, A E {\displaystyle A_{E}} is a diagonalizable matrix if the matrix is written in the basis F.

  7. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    The identity matrix commutes with all matrices. Jordan blocks commute with upper triangular matrices that have the same value along bands. If the product of two symmetric matrices is symmetric, then they must commute. That also means that every diagonal matrix commutes with all other diagonal matrices. [9] [10] Circulant matrices commute.

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Specifically, the singular value decomposition of an complex matrix ⁠ ⁠ is a factorization of the form =, where ⁠ ⁠ is an ⁠ ⁠ complex unitary matrix, is an rectangular diagonal matrix with non-negative real numbers on the diagonal, ⁠ ⁠ is an complex unitary matrix, and is the conjugate transpose of ⁠ ⁠. Such decomposition ...

  9. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A strictly diagonally dominant matrix (or an irreducibly diagonally dominant matrix [2]) is non-singular. A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix ...