Search results
Results from the WOW.Com Content Network
An anti-diagonal matrix is invertible if and only if the entries on the diagonal from the lower left corner to the upper right corner are nonzero. The inverse of any invertible anti-diagonal matrix is also anti-diagonal, as can be seen from the paragraph above. The determinant of an anti-diagonal matrix has absolute value given by the product ...
The trace of a matrix is the sum of the diagonal elements. The top-right to bottom-left diagonal is sometimes described as the minor diagonal or antidiagonal. The off-diagonal entries are those not on the main diagonal. A diagonal matrix is one whose off-diagonal entries are all zero. [4] [5]
In mathematics, persymmetric matrix may refer to: a square matrix which is symmetric with respect to the northeast-to-southwest diagonal (anti-diagonal); or; a square matrix such that the values on each line perpendicular to the main diagonal are the same for a given line. The first definition is the most common in the recent literature.
The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix. Hilbert matrix: a ij = (i + j − 1) −1. A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j).
If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. The sum of two skew-symmetric matrices is skew-symmetric. A scalar multiple of a skew-symmetric matrix is skew-symmetric. The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.
The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.
The identity matrix commutes with all matrices. Jordan blocks commute with upper triangular matrices that have the same value along bands. If the product of two symmetric matrices is symmetric, then they must commute. That also means that every diagonal matrix commutes with all other diagonal matrices. [9] [10] Circulant matrices commute.
An atomic (lower or upper) triangular matrix is a special form of unitriangular matrix, where all of the off-diagonal elements are zero, except for the entries in a single column. Such a matrix is also called a Frobenius matrix , a Gauss matrix , or a Gauss transformation matrix .